16 research outputs found

    Accelerating Electrostatic Surface Potential Calculation with Multiscale Approximation on Graphics Processing Units

    Get PDF
    Tools that compute and visualize biomolecular electrostatic surface potential have been used extensively for studying biomolecular function. However, determining the surface potential for large biomolecules on a typical desktop computer can take days or longer using currently available tools and methods. This paper demonstrates how one can take advantage of graphic processing units (GPUs) available in today’s typical desktop computer, together with a multiscale approximation method, to significantly speedup such computations. Specifically, the electrostatic potential computation, using an analytical linearized Poisson Boltzmann (ALPB) method, is implemented on an ATI Radeon 4870 GPU in combination with the hierarchical charge partitioning (HCP) multiscale approximation. This implementation delivers a combined 1800-fold speedup for a 476,040 atom viral capsid

    Combining Spatial-Temporal and Phylogenetic Analysis Approaches for Improved Understanding on Global H5N1 Transmission

    Get PDF
    Background Since late 2003, the highly pathogenic influenza A H5N1 had initiated several outbreak waves that swept across the Eurasia and Africa continents. Getting prepared for reassortment or mutation of H5N1 viruses has become a global priority. Although the spreading mechanism of H5N1 has been studied from different perspectives, its main transmission agents and spread route problems remain unsolved. Methodology/Principal Findings Based on a compilation of the time and location of global H5N1 outbreaks from November 2003 to December 2006, we report an interdisciplinary effort that combines the geospatial informatics approach with a bioinformatics approach to form an improved understanding on the transmission mechanisms of H5N1 virus. Through a spherical coordinate based analysis, which is not conventionally done in geographical analyses, we reveal obvious spatial and temporal clusters of global H5N1 cases on different scales, which we consider to be associated with two different transmission modes of H5N1 viruses. Then through an interdisciplinary study of both geographic and phylogenetic analysis, we obtain a H5N1 spreading route map. Our results provide insight on competing hypotheses as to which avian hosts are responsible for the spread of H5N1. Conclusions/Significance We found that although South China and Southeast Asia may be the virus pool of avian flu, East Siberia may be the source of the H5N1 epidemic. The concentration of migratory birds from different places increases the possibility of gene mutation. Special attention should be paid to East Siberia, Middle Siberia and South China for improved surveillance of H5N1 viruses and monitoring of migratory birds

    Spatial analysis of hemorrhagic fever with renal syndrome in China

    Get PDF
    BACKGROUND: Hemorrhagic fever with renal syndrome (HFRS) is endemic in many provinces with high incidence in mainland China, although integrated intervention measures including rodent control, environment management and vaccination have been implemented for over ten years. In this study, we conducted a geographic information system (GIS)-based spatial analysis on distribution of HFRS cases for the whole country with an objective to inform priority areas for public health planning and resource allocation. METHODS: Annualized average incidence at a county level was calculated using HFRS cases reported during 1994–1998 in mainland China. GIS-based spatial analyses were conducted to detect spatial autocorrelation and clusters of HFRS incidence at the county level throughout the country. RESULTS: Spatial distribution of HFRS cases in mainland China from 1994 to 1998 was mapped at county level in the aspects of crude incidence, excess hazard and spatial smoothed incidence. The spatial distribution of HFRS cases was nonrandom and clustered with a Moran's I = 0.5044 (p = 0.001). Spatial cluster analyses suggested that 26 and 39 areas were at increased risks of HFRS (p < 0.01) with maximum spatial cluster sizes of ≤ 20% and ≤ 10% of the total population, respectively. CONCLUSION: The application of GIS, together with spatial statistical techniques, provide a means to quantify explicit HFRS risks and to further identify environmental factors responsible for the increasing disease risks. We demonstrate a new perspective of integrating such spatial analysis tools into the epidemiologic study and risk assessment of HFRS

    Coordinating Computation and I/O in Massively Parallel Sequence Search

    No full text

    Geographical Environment Factors and Risk Assessment of Tick-Borne Encephalitis in Hulunbuir, Northeastern China

    No full text
    Tick-borne encephalitis (TBE) is one of natural foci diseases transmitted by ticks. Its distribution and transmission are closely related to geographic and environmental factors. Identification of environmental determinates of TBE is of great importance to understanding the general distribution of existing and potential TBE natural foci. Hulunbuir, one of the most severe endemic areas of the disease, is selected as the study area. Statistical analysis, global and local spatial autocorrelation analysis, and regression methods were applied to detect the spatiotemporal characteristics, compare the impact degree of associated factors, and model the risk distribution using the heterogeneity. The statistical analysis of gridded geographic and environmental factors and TBE incidence show that the TBE patients mainly occurred during spring and summer and that there is a significant positive spatial autocorrelation between the distribution of TBE cases and environmental characteristics. The impact degree of these factors on TBE risks has the following descending order: temperature, relative humidity, vegetation coverage, precipitation and topography. A high-risk area with a triangle shape was determined in the central part of Hulunbuir; the low-risk area is located in the two belts next to the outside edge of the central triangle. The TBE risk distribution revealed that the impact of the geographic factors changed depending on the heterogeneity
    corecore